
Visible Analyst Tutorial

 pg.

P a g e | 1

Visible® Analyst
Tutorial

Visible Systems Corporation
24 School Street, 2nd floor

Boston, MA 02108
617-902-0767

www.visiblesystemscorp.com

https://twitter.com/VISIBLECorp

Email: contact@visiblesystemscorp.com

http://www.visiblesystemscorp.com/
https://twitter.com/VISIBLECorp

Visible Analyst Tutorial

2

Enterprise-wide Analysis, Design
and Planning for Improvement.

 4

Information in this document is subject to change without notice and does not represent a commitment on the part of
Visible Systems Corporation. The software described in this document is furnished under a license agreement or
non-disclosure agreement. The software may be used or copied only in accordance with the terms of this agreement.
It is against the law to copy the software onto any medium except as specifically allowed in the license or non-
disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise,
including photocopying, reprinting, or recording, for any purpose without the express written permission of Visible
Systems Corporation. Visible Systems Corporation makes no representations or warranties with respect to the
contents or use of this manual, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Names, dates, and information used in examples in this manual are fictitious and
only for examples.

Copyright 2008 – 2020 by Visible Systems Corporation, All rights

reserved. Printed and bound in the United States of America.

This manual was prepared using Microsoft Word for Windows.

Visible Analyst
Tutorial on Structured Methods, Repository Management and The Zachman Framework

Visible Analyst® is a registered trademark of Visible Systems Corporation.

The Zachman Framework illustration on the cover page of this tutorial was printed and used with the permission of
the Intervista Institute © 2004 (www.intervista-institute.com). Microsoft and Windows are registered trademarks of
Microsoft Corporation. Other product and company names are either trademarks or registered trademarks of their
respective owners.

http://www.intervista-institute.com/

Visible Analyst Tutorial

5

Dear Colleagues:

Thank you for your time in selecting our product, the Visible Analyst. At Visible, we take your time and
effort seriously. To that end, we pride ourselves on delivering the most appropriate, value-oriented
solutions. And, we feel that we offer the very best in product support that often differentiates us from
our competitors.

As you read though the tutorial, please take the time to understand that our approach to software development is one
of a model driven approach. Within the framework of this approach, Visible, in part, supports the Model Driven
Architecture (MDA) as defined by the Object Management Group (OMG). This group, commonly referred to as the
OMG, is an open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise wide applications. For more information about the OMG and in particular
their MDA specification, please reference their web site at http://www.omg.org/mda/.

In conjunction with a model driven approach, Visible has incorporated a framework to enable you to better plan and

manage your Enterprise Architecture effort. In this edition, The Zachman Framework, is the framework of choice.
However, you can customize the Visible Analyst to implement other frameworks like, for example, the US Federal
Enterprise Architecture Framework (FEAF).

Visible Systems Corporation. Visible Analyst, Visible Developer, Visible Data Governance, Visible Web Portal, Visible Self
Service Data Discovery, Visible Sight (Context-driven business insights), Razor SCM, Polaris (Task Management).

http://www.omg.org/mda/

Collaboration Diagramming

Collaboration Diagramming

OVERVIEW
UML includes specifications for two forms of interaction diagrams: sequence diagrams and
collaboration diagrams. Both diagrams present the objects participating in a business scenario
and show the messages sent and received.

The sequence diagram uses ‗lifelines,‘ parallel bars drawn below the objects, so that the
sequence of messages sent and received can be understood by looking at the diagram from top
to bottom. On the other hand, in a collaboration diagram the objects are arranged so that the
basic relationships are highlighted; and sequence numbers are used to order the messages sent
and received.

A collaboration diagram consists of a set of objects that together carry out a scenario, the links
between the objects, and details concerning the messages sent and received. A collaboration
diagram can be drawn at the class level or at the instance level.
• At the class level, it shows the associations or relationships between the different classes.
• At the instance level, it shows the links or messages that are passed between the

instances.

DEFINITIONS
The important diagram constructs in collaboration diagrams include:

Object An object appears in as a plain rectangle with an underlined title. It

represents an entity with a well-defined boundary and identity that
encapsulates state and behavior. A collaboration diagram may be
populated with objects representing different classes, as well as
objects representing specific instances in a class.

Note A note appears as a rectangle with the top right corner folded over.

A note is used to record descriptive text that appears on the
diagram.

7

Collaboration Diagramming

Object Link An object link appears as a solid line connecting two objects and
represents the fact that there is a relationship between the two
objects. Visible Analyst automatically adds an object link (as part
of the task) when a message is drawn between two objects.

Procedure Call A procedure call is a message between two objects, appearing as a

filled solid arrow. The target object (at the arrowhead end) must
complete its task before the calling process can continue.

Flat Flow of Control Flat flow of control is a message between two objects, appearing as

a stick arrowhead and signifying the passing of control from the
originating object to the target object.

Asynchronous Stimulus Asynchronous stimulus is a message between two objects,

appearing as a half-stick arrowhead, and used instead of a stick
arrowhead to show an asynchronous communication between two
objects in a procedural sequence.

Return A return is a message between two objects, appearing as a dashed

arrow with a stick arrowhead, and represents a return from a
procedure call.

Self-Delegation Self-delegation is a message from an object to itself, appearing as a

recursive arrow.

Note Link A note link appears as a dotted line connecting an object with a
note.

DEVELOPING YOUR COLLABORATION DIAGRAM

Describing Scenarios using a Collaboration Diagram
The business analyst creates a collaboration diagram to explore the following questions:
• What objects are included in the scenario?
• What messages are sent and received?
• What is the sequence of the messages?

The objects that are included in a scenario are typically part of the enterprise model. For
example, an object introduced to the repository using the class diagram can certainly be
reused in a collaboration diagram. See Lesson 10, The Class Diagrams.

Collaboration Diagramming

Object Instances Versus Object Classes
The objects appearing in a collaboration diagram may represent object instances or object
classes. The way in which an object is identified determines if the object is an instance or a
class. When the name is specified, it means this object represents a particular object instance.
For example ‗John Smith:: Applicant‘ represents the fact that ‗John Smith‘ is a member of the
‗Applicant‘ class. If no object name is specified, the object represents the class.

Note the object class must always be specified. The object identifier is separated into two
parts using a double colon (::); the first part specifies the name, the second part the class.

Object Methods
The messages sent to and from an object must ‗fit‘ the object, or correspond with its methods.
Only methods from the derivation tree of the target (the one receiving the message) object's
class can be used. All available methods are displayed in the drop-down list. If you want to
create a new method, click the New Method button.

If the method has arguments, you can specify values for the arguments by clicking the Values
button. By default the name and type for the method are displayed. If you want to change the
argument list of the method, click the Change Arguments button.

 Note The degree to which you can change method or message attributes

depends on your rights to the target object's class and the interaction diagram
settings.

Object Links
A Label Message dialog box appears when an object link is drawn between two objects. You
must then supply details concerning the messages. If you are not ready to define these details
(or wish to define them a later), you can delete the message icons, and retain the object link as
a solid line.

Messages
Messages are added to the collaboration diagram to describe the way in which the objects will
work together.

The following information is maintained for each message:
• To and From. The name of the target object and source object. This can be switched by

clicking the reverse button.
• Type. The type of message, either asynchronous stimulus, flat flow of control, or

procedure call.
• Occurs Multiple Times. Indicates the message will be called more than once. If this

option is selected, an asterisk will appear next to the message name on the diagram.

9

Collaboration Diagramming

Set the Zoom Level: 1 From the View menu, select 66% zoom so you can
see all of the needed workspace.

Create a New Diagram: 2 From the File menu select New Diagram.

 3 Select the diagram type Collaboration Diagram.

 4 Select Standard Workspace and Portrait
Orientation.

 5 Click OK.

Add Objects: 6 Click on the first symbol button, the rectangle, on
the control bar. This represents an object.

 7 Place the cursor inside the diagram workspace and
click the left mouse button.

• Guard Condition. Specify the guard condition that controls the firing of the message.
This is a free-form text field. A guard condition is a logical expression that evaluates to
TRUE or FALSE, and must be satisfied before the message can be sent.

• Sequence Number. Indicates the order of messages. This can be either a single numeric
value such as 1, 2, or 3, or a decimal such has 1.2, or 1.1.4. This option is only available
on collaboration diagrams, since sequence diagrams by their very nature indicate message
ordering.

DEPARTMENT OF MOTOR VEHICLES SCENARIO
The collaboration diagram example is based on the following scenario:
• The registrar logs onto the system and selects the driver registration window.
• By selecting the option New Applicant, an Applicant object appears. Details concerning

the applicant‘s name, address, and phone number are recorded.
• The registrar verifies that the applicant possesses an insurance certificate, and if yes,

records the coverage limits. The registrar also verifies that the applicant has a learner‘s
permit. Once these checks are made the applicant is considered ‗Valid‘ and is ready for
the road test.

• If the applicant passes the road test, a driver‘s license is issued.

A completed collaboration diagram is shown in Figure 15-1.

Adding Objects to a View
The basic building block of the collaboration diagram is the ‗object‘. The following steps are
taken to establish a new collaboration diagram and create the objects.

192

Collaboration Diagramming

193

 8 Label the object, leaving the name field blank, and
the class field ―Applicant‖.

9 Add the rest of the objects as shown in Figure 15-1.

Save the Diagram: 10 Save the Collaboration Diagram, and give it the
name ‗Driver Registration‘.

Adding Relationships to a Collaboration Model
The relationships in a collaboration diagram appear as object links. Messages to and from the
objects are added to the object links.

This procedure was written with Auto Label Lines turned on; thus message details must be
added when an object link is drawn.

Add Object Links: 1 Select the object link from the control bar and make
a connection from ‗Driver Registration Window‘ to
‗Applicant‘.

Add Message to the
Object Link:

2 Select the method that is associated with the target
object; or if no method exists, add a method. Add
the method ―new‖.

 3 Select the message type ‗Flat Flow of Control‘.

 4 Leave the guard condition blank.

 5 Enter the sequence number ‗1.1‘.

 6 Continue adding messages until the model is
complete, as shown in Figure 15-1.

Save: 7 Select Save from the File menu.

Collaboration Diagramming

194

Figure 15-1 Collaboration Diagram Example

195

Where To Go From Here

	Collaboration Diagramming
	OVERVIEW
	DEFINITIONS
	DEVELOPING YOUR COLLABORATION DIAGRAM
	Describing Scenarios using a Collaboration Diagram
	Object Instances Versus Object Classes
	Object Methods
	Object Links
	Messages

	DEPARTMENT OF MOTOR VEHICLES SCENARIO
	Adding Objects to a View
	Adding Relationships to a Collaboration Model
	Figure 15-1 Collaboration Diagram Example

